F322: Chains, Energy and Resources Halogenoalkanes

Mark Scheme

1. Any TWO from:

CFCs take many years to reach the ozone layer OR long residence time

CFCs are still being used
there are other ozone depleting substances \checkmark
IGNORE because chlorine radicals stay in the stratosphere
ALLOW other named ozone depleting substances e.g. NO and HFCs
2. (i) substitution/hydrolysis (1)
(ii) electron pair donor (1) 1
(iii)

correct dipole (1)
curly arrow from the O in the OH - to C in the $\mathrm{CH}_{2}(\mathbf{1})$
curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Br}$ bond (1)
Br^{-}as a product (1)
3. (a) (i)

(ii) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ hot) pumice $/ \mathrm{H}_{3} \mathrm{PO}_{4}$
$\left(\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\right.$ or dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ loses the mark)
(b) (i)

diol
(ii)
also allow

Cl-alcohol
from the diol allow

$$
\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH} / \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \mathrm{O}
$$

i)
from the Cl -alcohol allow

4. (i)

require an attempt at a 3D structure and bond angles must clearly not be 90°.
require at least one 'wedge' bond or one 'dotted’ bond
(ii) $108-111^{\circ} \quad 1$
(iii) volatile/low boiling/gas/non-toxic/non-flammable/unreactive/liquefied under pressure/inert
(iv) homolytic = bonded pair split equally/ each retains 1 electron 1
$\begin{array}{ll}\text { fission } & \text { bond breaking } \\ 1\end{array}$
(v) $\mathrm{C}-\mathrm{Cl}$ (no mark) because it is the weaker bond $\quad 1$
(vi) $\mathrm{Cl} \bullet$ • 1 $\bullet \mathrm{CF}_{3}$ (allow $\mathrm{CF}_{3} \bullet$) $\quad 1$
(lack of 'dots' penalise once)
5. (a) (i) reaction $1 \quad 1$
(ii) reaction $4 \quad 1$
(iii) reaction $3 \longrightarrow 1$
(b) (i) lone pair/electron pair donor $\quad 1$

Correct dipole 1
Curly arrow from the O in the OH^{-}to C in the $\mathrm{CH}_{2} \quad 1$
Curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Cl}$ bond 1
Cl^{-}as a product 1
(c) (i) same molecular formula, different structure/arrangement of atoms. (same formula, different structure.)
(ii)

(d) (i) addition, (not additional) 1
(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1
(iii)

6. Essential marks:

Two possible methods of monitoring the reaction

Method 1

AgNO_{3}
Ethanol \& Waterbath/
/hydroxide
temp $40-80^{\circ} \mathrm{C}$
\& neutralise with HNO_{3}
relative amount of precipitation1
7. Properties:

Non-toxic/harmless			
non-flammable			
any two from:			
(propellant in) aerosols			
blowing polystyrene			
dry cleaning			
because it is volatile/ unreactive/ non-toxic/ easily			
degreasing agent			
because it is unreactive			
because it is a good solvent for organic material			
QWC			because it is a good solvent for organic material
:---			
because it is non-flammable			

- reasonable spelling, punctuation and grammar throughout

8. (a) Cl^{-}must be shown as a product
(at least 1) lone pair of electrons on the O in the OH^{-}with curly arrow from the lone pair on the OH^{-}to the $\mathrm{C}\left({ }^{\delta+}\right) \checkmark$
dipoles on the $\mathrm{C}-\mathrm{Cl}$ bond $\checkmark \quad 1$
curly arrow from $\mathrm{C}-\mathrm{C} l$ bond to the $\mathrm{C} l^{\delta^{-}} \checkmark \quad 1$
The mechanism below would get all 4 marks.

(b) (i) mark for method/dividing by $A_{\mathrm{r}} / \mathrm{C}, 3.15 ; \mathrm{H}, 6.3 ; \mathrm{Cl}, 1.58$. divide by smallest to get $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl} \checkmark \quad 1$ alternative method:
$\%$ of each element $\times 127 \div A_{\mathrm{r}}$ of that element $=$ molecular formula, hence deduce empirical formula
(ii) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2} \checkmark$
(iii) any unambiguous form of:

(iv) any unambiguous form of:

ecf to (iii) provided that there are two OHs in (iii)
